domingo, 18 de mayo de 2014

Concepto de electrónica análoga y digital

Señal analógica

Ejemplo de señal analógica.
Una señal analógica es un tipo de señal generada por algún tipo de fenómeno electromagnético y que es representable por una función matemática continua en la que es variable su amplitud y periodo (representando un dato de información) en función del tiempo. Algunas magnitudes físicas comúnmente portadoras de una señal de este tipo son eléctricas como la intensidad, la tensión y la potencia, pero también pueden ser hidráulicas como la presión, térmicas como la temperatura, mecánicas, etc.

Señal Digital


La señal digital es un tipo de señal generada por algún tipo de fenómeno electromagnético en que cada signo que codifica el contenido de la misma puede ser analizado en término de algunas magnitudes que representan valores discretos, en lugar de valores dentro de un cierto rango. Por ejemplo, el interruptor de la luz sólo puede tomar dos valores o estados: abierto o cerrado, o la misma lámpara: encendida o apagada (véase circuito de conmutación). Esto no significa que la señal físicamente sea discreta ya que los campos electromagnéticos suelen ser continuos, sino que en general existe una forma de discretizarla unívocamente.

Compuerta digital

Todos los sistemas digitales funcionan de manera binaria, los voltajes de entrada y salida son (dependiendo de su valor), separados en tres bloques:
  1. Estado ALTO (1) Entre 2 y 5V, Suponiendo que la alimentación de de 5V.
  2. Estado BAJO (0) Entre 0 y 0.8V, Suponiendo que la alimentación de de 5V.
  3. Estado Indefinido (Cualquier voltaje entre 0.9 y 1.99V).
(Estos valores pueden variar dependiendo la tecnología utilizada en las compuertas)

Para el manejo de sistemas digitales, Solamente los primeros dos bloques son útiles, ya que el tercer bloque nunca podría utilizarse, ya que produciría salidas inestables o aleatorias.

Debido a que sólo existen dos posibles estados de voltaje, el álgebra Booleana es la herramienta ideal para el desarrollo, análisis y reparación de sistemas digitales.

Álgebra Booleana

Sólo como aclaración. El álgebra Booleana es muy diferente al álgebra normal, ya que mientras que en la normal podemos utilizar cualquier símbolo para representar los más diversos valores, en el álgebra Booleana sólo es posible utilizar los símbolos para representar dos valores o variables, el 1 y el 0.
Por lo tanto, cualquier variable Booleana puede tener (en determinado caso) un valor de 1 o 0.

De esta manera podemos utilizar el álgebra Booleana para conocer el comportamiento de las distintas entradas y salidas de un circuito digital cualquiera, así como para encontrar el mejor uso de una función en algún circuito.

Para facilitar el uso del álgebra Booleana, normalmente se utilizan las primeras letras del alfabeto para ser asignadas a las entradas, y las últimas para las salidas.

Por ejemplo: Para saber cuál es el comportamiento de un circuito lógico con 3 entradas y 2 salidas, podríamos usar la siguiente notación:
  • Entrada 1 = A
  • Entrada 2 = B
  • Entrada 3 = C
  • Salida 1 = Z
  • Salida 2 = Y
Debido a que sólo podemos utilizar dos valores el álgebra Booleana es más fácil de operar en relación al algebra normal. Además de que no existen las Fracciones, Decimales, Raíz cuadrada, Números negativos, etc. El álgebra Booleana sólo cuenta con tres operaciones básicas: OR, AND y NOT.

Compuertas Lógicas

La construcción de las compuertas lógicas, está basada en componentes discretos (Transistores, Diodos, y Resistencias), pero con la enorme ventaja de que en un solo circuito integrado podemos encontrar 1, 2, 3 o 4 compuertas (dependiendo de su número de entradas y propiedades).

Todos los circuitos internos de las compuertas están conectados de manera que las entradas y salidas puedan manejar estados lógicos (1 o 0).

Tabla de verdad
Tabla de verdad
Tabla de verdad

Mapa de Karnaugh

Ejemplo de mapa de Karnaugh.
Un mapa de Karnaugh (también conocido como tabla de Karnaugh o diagrama de Veitch, abreviado como Mapa-Ko Mapa-KV) es un diagrama utilizado para la simplificación de funciones algebraicas Booleanas. El mapa de Karnaugh fue inventado en 1950 por Maurice Karnaugh, un físico y matemático de los laboratorios Bell.
Los mapas de Karnaugh reducen la necesidad de hacer cálculos extensos para la simplificación de expresiones booleanas, aprovechando la capacidad del cerebro humano para el reconocimiento de patrones y otras formas de expresión analítica, permitiendo así identificar y eliminar condiciones muy inmensas




Sistema secuencial

A diferencia de los sistemas combinacionales, en los sistemas secuenciales, los valores de las salidas, en un momento dado, no dependen exclusivamente de los valores de las entradas en dicho momento, sino también dependen del estado anterior o estado interno. El sistema secuencial más simple es el biestable, de los cuales, el de tipo D (o cerrojo) es el más utilizado actualmente.
La mayoría de los sistemas secuenciales están gobernados por señales de reloj. A éstos se los denomina "síncronos" o "sincrónicos", a diferencia de los "asíncronos" o "asincrónicos" que son aquellos que no son controlados por señales de reloj.
A continuación se indican los principales sistemas secuenciales que pueden encontrarse en forma de circuito integrado o como estructuras en sistemas programados:
En todo sistema secuencial nos encontraremos con:
a) Un conjunto finito, n, de variables de entrada (X1, X2,..., Xn).
b) Un conjunto finito, m, de estados internos, de aquí que los estados secuenciales también sean denominados autómatas finitos. Estos estados proporcionarán m variables internas (Y1,Y2,..., Ym).
c) Un conjunto finito, p, de funciones de salida (Z1, Z2,..., Zp).
Dependiendo de como se obtengan las funciones de salida, Z, los sistemas secuenciales pueden tener 

dos estructuras como las que se observan el la siguiente figura, denominadas: a) Máquina de Moore y b) Máquina de Mealy.



Sistema combinacional

Teoría de autómatas.svg
Acerca de esta imagen

Se denomina sistema combinacional o lógica combinacional a todo sistema digital en el que sus salidas son función exclusiva del valor de sus entradas en un momento dado, sin que intervengan en ningún caso estados anteriores de las entradas o de las salidas. Las funciones (ORANDNANDXOR) son booleanas (de Boole) donde cada función se puede representar en una tabla de la verdad. Por tanto, carecen de memoria y de retroalimentación.
En electrónica digital la lógica combinacional está formada por ecuaciones simples a partir de las operaciones básicas del álgebra de Boole. Entre los circuitos combinacionales clásicos tenemos:
  • Aritméticos y lógicos
Éstos circuitos están compuestos únicamente por puertas lógicas interconectadas entre sí.


Biestable

R1, R2 = 1 kΩ
R3, R4 = 10 kΩ


Un biestable (flip-flop en inglés), es un multivibrador capaz de permanecer en uno de dos estados posibles durante un tiempo indefinido en ausencia de perturbaciones.1 Esta característica es ampliamente utilizada en electrónica digital para memorizar información. El paso de un estado a otro se realiza variando sus entradas. Dependiendo del tipo de dichas entradas los biestables se dividen en:
  • Asíncronos: sólo tienen entradas de control. El más empleado es el biestable RS.
  • Síncronos: además de las entradas de control posee una entrada de sincronismo o de reloj. Si las entradas de control dependen de la de sincronismo se denominan síncronas y en caso contrario asíncronas. Por lo general, las entradas de control asíncronas prevalecen sobre las síncronas.
La entrada de sincronismo puede ser activada por nivel (alto o bajo) o por flanco (de subida o de bajada). Dentro de los biestables síncronos activados por nivel están los tipos RS y D, y dentro de los activos por flancos los tipos JKT y D.
Los biestables síncronos activos por flanco (flip-flop) se crearon para eliminar las deficiencias de los latches (biestables asíncronos o sincronizados por nivel).


Amplificadores operacionales

Amplificador operacional

741 con encapsulado metálico TO-5.
Se trata de un dispositivo electrónico (normalmente se presenta como circuito integrado) que tiene dos entradas y una salida. La salida es la diferencia de las dos entradas multiplicada por un factor (G) (ganancia):
Vout = G·(V+ − V)el más conocido y comúnmente aplicado es el UA741 o LM741.
El primer amplificador operacional monolítico, que data de los años 1960, fue el Fairchild μA702 (1964), diseñado por Bob Widlar. Le siguió el Fairchild μA709 (1965), también de Widlar, y que constituyó un gran éxito comercial. Más tarde sería sustituido por el popular Fairchild μA741 (1968), de David Fullagar, y fabricado por numerosas empresas, basado en tecnología bipolar.
Originalmente los A.O. se empleaban para operaciones matemáticas (sumarestamultiplicacióndivisiónintegración,derivación, etc.) en calculadoras analógicas. De ahí su nombre.
El A.O. ideal tiene una ganancia infinita, una impedancia de entrada infinita, un ancho de banda también infinito, una impedancia de salida nula, un tiempo de respuesta nulo y ningún ruido. Como la impedancia de entrada es infinita también se dice que las corrientes de entrada son cero.

Seguidor[editar]

  • Es aquel circuito que proporciona a la salida la misma tensión que a la entrada.
Seguidor de tensión
  • Se usa como un buffer, para eliminar efectos de carga o para adaptar impedancias (conectar un dispositivo con gran impedancia a otro con baja impedancia y viceversa)
  • Como la tensión en las dos patillas de entradas es igual: Vout = Vin
  • Zin = ∞
Presenta la ventaja de que la impedancia de entrada es elevadísima, la de salida prácticamente nula, y puede ser útil, por ejemplo, para poder leer la tensión de un sensor con una intensidad muy pequeña que no afecte apenas a la medición. De hecho, es un circuito muy recomendado para realizar medidas de tensión lo más exactas posibles, pues al medir la tensión del sensor, la corriente pasa tanto por el sensor como por el voltímetro y la tensión a la entrada del voltímetro dependerá de la relación entre la resistencia del voltímetro y la resistencia del resto del conjunto formado por sensor, cableado y conexiones.
Por ejemplo, si la resistencia interna del voltímetro es Re (entrada del amplificador), la resistencia de la línea de cableado es Rl y la resistencia interna del sensor esRg, entonces la relación entre la tensión medida por el voltímetro (Ve) y la tensión generada por el sensor (Vg) será la correspondiente a este divisor de tensión:
 V_e =  \frac{R_e}{R_g+R_l+R_e} \cdot V_g
Por ello, si la resistencia de entrada del amplificador es mucho mayor que la del resto del conjunto, la tensión a la entrada del amplificador será prácticamente la misma que la generada por el sensor y se podrá despreciar la caída de tensión en el sensor y el cableado.
Además, cuanto mayor sea la intensidad que circula por el sensor, mayor será el calentamiento del sensor y del resto del circuito por efecto Joule, lo cual puede afectar a la relación entre la tensión generada por el sensor y la magnitud medida.

No inversor[editar]

Amplificador no inversor
Como observamos, la tensión de entrada, se aplica al pin positivo, pero como conocemos que la ganancia del amplificador operacional es muy grande, el voltaje en el pin positivo es igual al voltaje en el pin negativo y positivo, conociendo el voltaje en el pin negativo podemos calcular la relación que existe entre el voltaje de salida con el voltaje de entrada haciendo uso de un pequeño divisor de tensión.
  • V_\mathrm{out} = V_\mathrm{in} \left(1+\frac{R_2}{R_1}\right)
  • Zin = ∞, lo cual nos supone una ventaja frente al amplificador inversor.

Sumador inversor[editar]

Amplificador sumador de n entradas
  • La salida está invertida
  • Para resistencias independientes R1, R2,... Rn
    • V_\mathrm{out} = -R_f \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \dots + \frac{V_n}{R_n}\right)
  • La expresión se simplifica bastante si se usan resistencias del mismo valor
  • Impedancias de entrada: Zn = Rn

Restador Inversor[editar]

Amplificador diferenciador
  • Para resistencias independientes R1,R2,R3,R4:
    •  V_\mathrm{out} = V_2 \left( { \left( R_3 + R_1 \right) R_4 \over \left( R_4 + R_2 \right) R_1} \right) - V_1 \left( {R_3 \over R_1} \right)
  • Igual que antes esta expresión puede simplificarse con resistencias iguales
  • La impedancia diferencial entre dos entradas es Zin = R1 + R2 + Rin, donde Rin representa la resistencia de entrada diferencial del amplificador, ignorando las resistencias de entrada del amplificador de modo común.
  • Cabe destacar que este tipo de configuración tiene una resistencia de entrada baja en comparación con otro tipo de restadores como por ejemplo elamplificador de instrumentación


EL TRANSISTOR

CONCEPTO DEL TRANSISTOR

El transistor es un dispositivo electrónico semiconductor utilizado para producir una señal de salida en respuesta a otra señal de entrada. 1 Cumple funciones de amplificadorosciladorconmutador o rectificador. El término «transistor» es la contracción en inglés de transfer resistor («resistencia de transferencia»). Actualmente se encuentran prácticamente en todos los aparatos electrónicos de uso diario: radiostelevisoresreproductores de audio y videorelojes de cuarzocomputadoraslámparas fluorescentestomógrafosteléfonos celulares, entre otros.


CARACTERÍSTICAS DE LOS TRANSISTORES

  • Su tensión de alimentación característica se halla comprendida entre los 4,75V y los 5,25V (como se ve, un rango muy estrecho). Normalmente TTL trabaja con 5V.
  • Los niveles lógicos vienen definidos por el rango de tensión comprendida entre 0,0V y 0,8V para el estado L (bajo) y los 2,4V y Vcc para el estado H (alto).
  • La velocidad de transmisión entre los estados lógicos es su mejor base, si bien esta característica le hace aumentar su consumo siendo su mayor enemigo. Motivo por el cual han aparecido diferentes versiones de TTL como FAST, LS, S, etc y últimamente los CMOS: HC, HCT y HCTLS. En algunos casos puede alcanzar poco más de los 250 MHz.
  • Las señales de salida TTL se degradan rápidamente si no se transmiten a través de circuitos adicionales de transmisión (no pueden viajar más de 2 m por cable sin graves pérdidas).

FAMILIA DE TRANSISTORES

 

Transistor de unión bipolar[editar]

Diagrama de Transistor NPN
El transistor de unión bipolar, o BJT por sus siglas en inglés, se fabrica básicamente sobre un monocristal de Germanio, Silicio o Arseniuro de galio, que tienen cualidades de semiconductores, estado intermedio entre conductores como losmetales y los aislantes como el diamante. Sobre el sustrato de cristal, se contaminan en forma muy controlada tres zonas, dos de las cuales son del mismo tipo, NPN o PNP, quedando formadas dos uniones NP.
La zona N con elementos donantes de electrones (cargas negativas) y la zona P de aceptadores o «huecos» (cargas positivas). Normalmente se utilizan como elementos aceptadores P al Indio (In), Aluminio (Al) o Galio (Ga) y donantes N alArsénico (As) o Fósforo (P).
La configuración de uniones PN, dan como resultado transistores PNP o NPN, donde la letra intermedia siempre corresponde a la característica de la base, y las otras dos al emisor y al colector que, si bien son del mismo tipo y de signo contrario a la base, tienen diferente contaminación entre ellas (por lo general, el emisor está mucho más contaminado que el colector).
El mecanismo que representa el comportamiento semiconductor dependerá de dichas contaminaciones, de la geometría asociada y del tipo de tecnología de contaminación (difusión gaseosa, epitaxial, etc.) y del comportamiento cuántico de la unión.

Transistor FET

Transistor de efecto campo

JFET symbol P.pngP-channel
JFET symbol N.pngN-channel
Símbolos esquemáticos para los JFETs canal-n y canal-p. G=Puerta(Gate), D=Drenador(Drain) y S=Fuente(Source).
El transistor de efecto campo (Field-Effect Transistor o FET, en inglés) es en realidad una familia de transistores que se basan en el campo eléctrico para controlar la conductividad de un "canal" en un material semiconductor. Los FET pueden plantearse como resistencias controladas por diferencia de potencial.
La mayoría de los FET están hechos usando las técnicas de procesado de semiconductores habituales, empleando la oblea monocristalina semiconductora como la región activa o canal. La región activa de los TFT (thin-film transistor, o transistores de película fina) es una película que se deposita sobre un sustrato (usualmente vidrio, puesto que la principal aplicación de los TFT es como pantallas de cristal líquido o LCD).
Los transistores de efecto de campo o FET más conocidos son los JFET (Junction Field Effect Transistor), MOSFET(Metal-Oxide-Semiconductor FET) y MISFET (Metal-Insulator-Semiconductor FET).
Tienen tres terminales, denominadas puerta (gate), drenador (drain) y fuente (source). La puerta es la terminal equivalente a la base del BJT (Bipolar Junction Transistor). El transistor de efecto de campo se comporta como un interruptor controlado por tensión, donde el voltaje aplicado a la puerta permite hacer que fluya o no corriente entre drenador y fuente.
El funcionamiento del transistor de efecto de campo es distinto al del BJT. En los MOSFET, la puerta no absorbe corriente en absoluto, frente a los BJT, donde la corriente que atraviesa la base, pese a ser pequeña en comparación con la que circula por las otras terminales, no siempre puede ser despreciada. Los MOSFET, además, presentan un comportamiento capacitivo muy acusado que hay que tener en cuenta para el análisis y diseño de circuitos.
POLARIZARON DE UN TRANSISTOR BIPOLAR

CLASIFICACION DE LOS TRANSISTORES BIPOLARES

Los transistores bipolares se clasifican de la siguiente manera:
1.- Por la disposición de sus capas
- Transistores PNP
- Transistores NPN
2.- Por el material semiconductor empleado
- Transistores de Silicio
- Transistores de Germanio
3.- Por la disipación de Potencia
- Transistores de baja potencia
 -Transistores de mediana potencia
- Transistores de alta potencia
4.- Por la frecuencia de trabajo
- Transistores de baja frecuencia
- Transistores de alta frecuencia
B.- POLARIZACION DE LOS TRANSISTORES BIPOLARES

Para que un transistor bipolar funcione adecuadamente, es necesario polarizarlo correctamente. Para ellos se debe cumplir que:
- La juntura BASE - EMISOR este polarizado directamente, y
- La juntura COLECTOR – BASE este polarizado inversamente.
Ejemplo: Si el transistor es NPN, la base debe tener un voltaje positivo con respecto al emisor y el colector debe tener un voltaje también positivo pero, mayor que el de la base. En el caso de un transistor PNP debe ocurrir lo contrario.
C.- CODIFICACIÓN DE LOS TRANSISTORES BIPOLARES

Los transistores tienen un código de identificación que en algunos casos especifica la función que cumple y en otros casos indica su fabricación.
Pese a la diversidad de transistores, se distinguen tres grandes grupos: Europeos, Japoneses y Americanos.

Transistor en corte o en saturación

El funcionamiento del transistor depende de la cantidad de corriente que pase por su base.
Cuando no pasa corriente por la base, no puede pasar tampoco por sus otros terminales; se dice entonces que el transistor está en corte, es como si se tratara de un interruptor abierto. El transistor está en saturación cuando la corriente en la base es muy alta; en ese caso se permite la circulación de corriente entre el colector y el emisor y el transistor se comporta como si fuera un interruptor cerrado.

El transistor trabaja en conmutación cuando puede pasar de corte a saturación según la cantidad de corriente que reciba por su base.
En la animación, el ventilador (representado por una M) sólo funcionará cuando la temperatura sea alta. La ventaja de utilizar el transistor y no un interruptor convencional es que el transistor corta o reanuda la corriente de forma mucho más rápida.